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A B S T R A C T   

Effective planning for species conservation often requires an understanding of habitat use. The resources an 
animal selects within the landscape relate to its behavioral state and, therefore, incorporating behavior into 
habitat selection analyses can help inform management of threatened species. Here we present an approach for 
developing behavior-specific spatial habitat-use models using large quantities of GPS telemetry data. Using 
hidden Markov models, we first characterize 231,478 GPS fixes from 22 recently fledged endangered Tasmanian 
wedge-tailed eagles (Aquila audax fleayi) as reflective of either perching, short-distance flight, or long-distance 
flight. We then use a multivariate habitat selection ratio to develop spatial models predicting where these 
behavioral states occur. Recently fledged Tasmanian wedge-tailed eagles selected for areas close to forest edges 
during perching and short distance flights, whereas they selected more strongly for areas with steep topography 
(slopes > 15◦) and further from forest edges for longer flights. Models using distance to forest edge and topo
graphic slope effectively predicted where eagles engaged in long flights (R2 > 0.91, rs > 0.90) in each of six 
regions, whereas the performance varied by region for models describing perching (R2 

= 0.43–0.97, rs =

0.80–0.97) and short flights (R2 = 0.34–0.93, rs = 0.63–1.00). Our study provides a detailed understanding of 
habitat use by young Tasmanian wedge-tailed eagles, which has multiple applications in the ongoing conser
vation of the population. Our method illustrates a framework for spatially explicit and behavior-specific habitat 
selection analyses that can be applied to other species of conservation concern.   

1. Introduction 

Planning effective in situ conservation management often requires 
an understanding of the resources that animals use. Resource selection 
analyses can both describe and predict how animals use different hab
itats, and have thus become important tools in balancing conservation 
with expanding human footprints (Johnson et al., 2006; Manly et al., 
2002; Thurfjell et al., 2014). These methods facilitate understanding of 
the importance of different habitat resources, and the prediction of 
where animals are likely to occur within the broader landscape (Johnson 
et al., 2004). The spatial delineation of resource selection can then be 
used to assess impacts of changes in land use (Sawyer et al., 2006), guide 
the design and management of ecological reserves (Leroux et al., 2007), 

target reintroduction sites (Klar et al., 2008), and help identify and 
mitigate areas of human conflict, such as disturbance (Seip et al., 2007) 
and anthropogenic mortality (Meisingset et al., 2014; Miller et al., 2014; 
Reid et al., 2015). 

Habitat selection models do not traditionally take behavior into ac
count, rendering them susceptible to biased inferences of resource use 
(Roever et al., 2014). The way an animal selects habitats in the land
scape may vary substantially due to the distinct resource requirements 
of different behavioral states. For example, the resources required for 
foraging, resting, and reproduction are likely to be disparate and 
potentially opposing. Habitat selection models that lack a behavioral 
component may therefore fail to identify habitats that are highly 
important to infrequent behaviors, while opposing habitat requirements 
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during different behaviors can, within a statistical model, effectively 
cancel each other out (Abrahms et al., 2016; Bouyer et al., 2015; Roever 
et al., 2014). 

The ability to resolve this issue by connecting habitat selection to 
natural behavior has been limited by practical constraints of observing 
behavior over long periods of time and without observer presence 
affecting behavior (Mahoney and Young, 2017). However, the 
increasing temporal resolution of modern GPS-tracking technologies, 
together with advances in statistical techniques, are facilitating a more 
detailed understanding of animal behavior alongside habitat use. 
Frequent GPS relocations can identify explicit patterns in movement, 
from which statistical techniques can be used to infer different behav
ioral states, such as foraging, resting or travelling (Morales and Ellner, 
2002; Patterson et al., 2009). These behavioral states can be used in 
conjunction with resource selection analyses to give insight into be
haviors of particular significance to conservation management. For 
example, through behavioral space use modelling, Patterson et al. 
(2016) clarified how mammals and birds use marine reserves for 
foraging, Miller et al. (2014) were able to identify where eagle flights are 
likely to coincide with a high risk of wind turbine collisions, and Sur 
et al. (2021) linked behavioral states to habitat features in the context of 
development of infrastructure for solar energy extraction. Incorporating 
behavior into resource selection analyses can therefore be particularly 
useful in guiding the management of species reliant on conservation 
actions. 

Here we present an analytical approach for spatially explicit and 
behavior-specific habitat selection studies using high temporal- 
resolution GPS tracking data from Tasmanian wedge-tailed eagles 
(Aquila audax fleayi). The Tasmanian wedge-tailed eagle is an endan
gered (Commonwealth of Australia, 1999) subspecies endemic to the 
island of Tasmania. With the loss of the thylacine (Thylacinus cyn
ocephalus) and recent declines in populations of Tasmanian devils 
(Sarcophilus harrisii), the wedge-tailed eagle serves a particularly 
important ecological function as one of the few remaining top predators 
in Tasmanian ecosystems. However, the population faces a series of 
threats, including habitat loss, low reproductive rates linked to nest 
disturbance, and high rates of human-caused mortality due to exposure 
to environmental contaminants, persecution, and collisions with auto
mobiles, power lines, and wind turbines (Bekessy et al., 2009; Forest 
Practices Authority, 2017; Garnet and Baker, 2020; Mooney and 
Holdsworth, 1991; Pay et al., 2021, 2020; Threatened Species Section, 
2006). The number of collisions with powerlines and wind turbines is 
expected to increase with the growing development of wind energy in 
Tasmania and electrical infrastructure to service expanding residential 
and industrial developments (Bell and Mooney, 1998). Since risk is 
behavior specific (e.g., collision with an automobile is less likely during 
long-distance movements at high altitude than when stationary and 
feeding on roadkill), spatially explicit models showing where Tasmanian 
wedge-tailed eagles are likely to perform different behaviors can guide 
integrated planning and management at the landscape level to mitigate 
for these stressors. 

Our framework involves (1) categorizing GPS-tracking data into 
distinct behavioral states using derived movement attributes, (2) iden
tifying the habitat associations for each of the behavioral states, and (3) 
using this information to develop spatial models that predict where 
different behaviors are likely to occur in the landscape. Validation of the 
predictive capacity of maps produced by habitat selection analyses is 
often neglected (Johnson et al., 2006), even in conservation settings. We 
therefore conclude by (4) using a leave-one-out cross-validation 
(LOOCV) method to assess the predictive capacity of the spatial models 
by individual and region. 

2. Methods 

2.1. Study area & focal species 

The study was conducted in Tasmania, an island state located 240 km 
south of continental Australia. We sampled eagles in six different regions 
of Tasmania, which differ in their ecological communities and density of 
eagle nests (Fig. 1; see Appendix A for more details). Our study was 
focused on young wedge-tailed eagles during the post-fledging depen
dence period (PFDP), which is the period between fledging the nest and 
the onset of natal dispersal. Understanding habitat use during this life 
stage has immense conservation significance, both because of the low 
reproductive rates of the species (~60 % of nesting attempts result in 
failure; Forest Practices Authority, 2017) and the reported high mor
tality rates for young eagles in Tasmania (~50 %; Bell and Mooney, 
1998). 

2.2. Data collection 

We attached GPS-GSM solar-powered telemetry units (CTT-1000- 
BT3 Series; Cellular Tracking Technologies, Rio Grande, NJ, USA) to 
nestling Tasmanian wedge-tailed eagles (see Appendix A for details on 
nestling selection and capture). Each telemetry unit weighed ~65 g 
(1.47–1.96 % of body mass) and was attached as a backpack using an 
11.2 mm Teflon ribbon harness (Bally Ribbon Mills, Bally, PA). The 
telemetry units recorded GPS fixes every 15 min, from 1 h before sunrise 
to 1 h after sunset. The GPS calculated time of local sunrise and sunset, 
and so number of fixes varied throughout the year with day length. 
Movement data associated with each fix included location, altitude, 
speed, course over ground, and horizontal dilution of precision (HDOP). 
All fixes with a HDOP > 4 (9.7 % of raw data) were filtered from the final 
data set to maximize spatial accuracy. 

2.3. Calculating duration of the post-fledging dependence period (PFDP) 

To estimate the total length of the PFDP for each eagle we identified 
the fledging date (start of PFDP) and the initiation of natal dispersal (end 
of PFDP). Fledging was considered to have occurred when four 
consecutive GPS fixes were >10 m from the nest tree. We defined the 
onset of natal dispersal as the first day the bird travelled >7 km from the 
natal nest and subsequently was not <5 km from the nest for the 
following 10 days (‘Method 7’ from Weston et al., 2013). We did not 
include the first 50 days of the PFDP in the analysis, as during this period 
the young eagles were still associated with their natal nest, thus con
founding how they selected habitats. 

2.4. Data analysis 

2.4.1. Identifying behavioral states 
We classified the GPS fixes for each animal into movement states 

based on the distance and turning angles between consecutive GPS fixes 
using Hidden Markov Models (HMMs). HMM analyses are state- 
switching models that assume animal movement is driven by underly
ing behavioral modes (Patterson et al., 2017). We used HMMs (R 
package ‘moveHMM’; Michelot et al., 2016) to estimate the probability 
of each GPS fix being in each of three hypothesized behavioral states 
(state 1: a stationary state; state 2: characterized by movements over 
shorter distances with variable turning angles; state 3: characterized by 
movements over longer distances with relatively constant turning an
gles), and we assigned each GPS fix the state with the highest proba
bility. We included models using both step lengths and turning angles as 
well as models using solely step lengths. HMMs require the user defines 
the number of states and the initial parameters for each state. Following 
protocols in Michelot et al. (2016), we ran 100 model iterations each 
considering different initial parameters to establish the optimal pa
rameters to delineate the behavioral states. We identified the best 
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performing model by comparing the hessian matrices, state transition 
confidence intervals, state step length and turning angle distributions, 
and AIC. 

2.4.2. Associating behavioral states with habitats 
Once all GPS fixes had been assigned to a state, we used behavior- 

specific variograms (function ‘variogram’ in R package ‘ctmm’; Cal
abrese et al., 2016) to visualize the data for each individual and to 
identify a time threshold in which variance stabilized and each location 
could be considered independent. For each behavioral state, we then 
subsampled the GPS data by the time threshold specific to that state 
(function ‘track_resample’ in R package ‘amt’; Signer et al., 2019) before 
calculating univariate habitat selection ratios (Manly et al., 2002; 
function ‘widesIII’ in R package ‘AdehabitatHS’; Calenge, 2006). This 
approach compares the proportion of available habitat types to the 
proportion of time spent in each habitat. We defined the available 
habitat for each eagle by creating a 95 % minimum convex polygon 
(MCP) from the GPS data during the PFDP and buffering that area by an 
additional band that added 5 % to the total area of the MCP (Appendix 
B). The proportion of time spent performing each behavior in each 
habitat type was measured by the proportion of GPS fixes that fell within 
each habitat. The selection ratio (wi) values identify which habitats are 
being selected. As such, wi < 1 indicates a habitat used proportionally 
less than its availability (i.e., a wi of 0.5 indicates a habitat type used half 
as often as expected), and wi > 1 indicates a habitat used proportionally 
more than its availability (i.e., a wi of 2 indicates a habitat type used 
twice as often as expected). The habitat features we considered were 
slope, aspect, terrain ruggedness, distance to nearest ridgeline, and 
distance to nearest forest edge (DPIPWE, 2013, 2010; for derivation of 
habitat variables see Appendix B). These were selected based on the 
ecology of the study species and published work on congeners (Appen
dix B). All habitat variables were delineated as raster files with a 30 m2 

resolution. We assigned each GPS fix the habitat values from the raster 
cell in which they were located (function ‘extract’ in R package ‘raster’; 
Hijmans et al., 2021). Due to the number of behavioral states and habitat 

variables, we adopted a highly conservative significance level of p =
0.001 to reduce Type 1 error rates. 

2.4.3. Predicting where different behaviors occur 
We used a multivariate habitat selection ratio to predict where eagle 

behaviors are likely to occur (Basson et al., 2012; Eveson et al., 2015; 
Patterson et al., 2016). We chose this technique instead of a generalized 
linear model (GLM) based resource selection analysis (e.g., Fortin et al., 
2005) because there is contention over how best to place the pseudo- 
absences that are often required for a GLM approach (e.g., VanDerWal 
et al., 2009). 

We included habitat variables in the multivariate model that were 
identified as significant from the univariate habitat selection ratios (as 
calculated in Section 2.4.2, above). If habitat variables were spatially 
autocorrelated (Pearson's r > 0.8; ‘layerStats’ function in R package 
‘raster’; Hijmans et al., 2021), we retained the variable for which the 
eagles showed a stronger univariate selection (χ2). We created a 30 m2 

raster stack of the habitat covariates and calculated, for each bird, both 
the available (from the buffered 95 % MCP) and used (extracted habitat 
values for each GPS fix) proportion of the combination of covariates. The 
Selection Value (SV) was then calculated as 

SV =

(
∑n

i=1
h(U)i

/
h(A)i

)
/

n (1)  

where i represents each individual, n is the total number of individuals, h 
(A) represents the joint frequency distribution of habitat covariates 
across the areas available to each individual, and h(U) represents the 
joint frequency distribution of habitat covariates used by each individ
ual (Patterson et al., 2016). The SV is therefore an averaged selection 
ratio across all individuals, which should give a population-level esti
mate better suited for predicting new activity (Matthiopoulos et al., 
2020). The SV is interpreted similarly to the wi habitat selection ratio (i. 
e., SV > 1 indicating selection, SV < 1 indicating avoidance). We con
structed habitat selection maps as raster images for each behavior by 

Fig. 1. Location of Tasmanian wedge-tailed eagle nest sites where nestlings were fitted with a GPS telemetry unit during 2017 and 2018. At two of these nests, a 
nestling was fitted with a GPS transmitter in both the 2017 and 2018 breeding seasons. The regions used to compare model performance in different areas of 
Tasmania are labelled, with slope and forest cover indicated by the shade of the land area. Inset shows the GPS location from one of the eagles, colored by behavioral 
state: state 1 (perching), state 2 (short flights) and state 3 (long flights). 
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taking the relevant habitat covariate values for each 30 m2 pixel and 
assigning the associated SV. 

2.4.4. Cross-validation of behavior-specific spatial models 
To evaluate the predictive performance of the behavior-specific SV 

models, we used methods proposed by Boyce et al. (2002) and Johnson 
et al. (2006) that we modified to include a leave-one-out cross-valida
tion (LOOCV) framework. We used LOOCV instead of temporal or 
random k-fold partitioning, as our aim was to assess the predictive 
ability of the models for areas and individuals across Tasmania. We 
repeatedly ran the SV estimation for each model, in each case leaving 
out all GPS data from one individual, and then using those as test data 
for model validation (the number of repetitions of the SV estimation 
therefore was equal to the number of birds tagged). For each run of the 
LOOCV we calculated the SV for each 30 m2 grid cell of available habitat 
for the test eagle. We reclassified the continuous SV values into six 
ordinal bins, ensuring validation points and reliable amounts of avail
able land area in each bin. We then calculated the proportion of GPS 
fixes that were expected to fall within each SV bin based on the model 
(Eqs. (4) and (5) in Johnson et al., 2006) and compared this to the 
proportion of test data GPS fixes that fell within the corresponding bin. 
Model performance was assessed by comparing the expected and 
observed values using linear regression and Spearman-rank correlation. 
A model that predicts habitat use accurately would have a regression 
intercept (b0) approaching 0, a regression slope (b1) approaching 1 and 
significantly different from 0, a high regression R2 value (good ≥ 0.8, 
moderate = 0.5–0.8), and a significant positive rank correlation (Boyce 
et al., 2002; Johnson et al., 2006). 

To explore spatial variability in model performance we grouped 
eagles according to the geographic regions and we calculated for each 
region the mean expected vs. observed regression R2 values, the mean 
rank correlation rs values, and the percentage of individual cross vali
dation runs that the models predicted well according to all measures of 
model performance. 

3. Results 

We attached GPS telemetry units to 22 Tasmanian wedge-tailed 
eagle nestlings from 20 different natal territories during the 
2016–2017 (n = 7) and 2017–2018 (n = 15) breeding seasons (a 
maximum of one bird per territory per year). Our data consisted of 
231,478 GPS fixes, with a mean number of fixes per eagle of 10,522 
(range: 5299–22,373). The grand mean 15-min step length was 263.4 m 
(per-individual mean range: 77–410.8 m), with the maximum step 
length by each individual ranging from 2456 to 7078 m (Appendix 
Table C.1). The mean duration of the PFDP was 331.4 ± 158 days (±SD; 
range 148–607; Appendix Table C.1). There was little variation in the 
duration of the PFDP between the two breeding seasons studied 
(2016–2017 season mean = 310 ± 170 days; 2017–2018 mean = 341 ±
151 days). The mean size of available habitat (buffered 95 % MCP) was 
34.4 km2 (range: 10.4–94.5 km2; Appendix Table C.1). 

3.1. Identifying behavioral states 

The best performing HMM differentiated the three behavioral states 
using only step length as follows: state 1, a stationary state characterized 
by very small movements had a mean step length of 10 ± 8 m (±SD), 
41.8 % of GPS fixes (Appendix Table C.2); state 2 characterized by in
termediate distance movements had a mean step length of 166 ± 96 m, 
39.3 %; and state 3 characterized by relatively longer distance move
ments with a mean step length of 795 ± 414 m, 18.9 % (Appendix 
Table C.2 and Fig. C.1). Models including turning angle performed less 
well, with turning angle distributions varying little between the states 2 
and 3 (Appendix Fig. C.2). Early (≤ 2 h after sunrise) and late (≤ 2 h 
before sunset) in the day, birds spent the highest proportion of their time 
in state 1 (61.1 % of GPS fixes during these 4 h). During the 3 h in the 

middle of the day state 3 was the commonest behavior (34.2 % of GPS 
fixes; Appendix Fig. C.3). 

3.2. Associating behavioral states with habitats 

The variance of the GPS-data stabilized and the temporal autocor
relation decreased around 4 h for state 1, 2 h for state 2, and 1 h for state 
3 (Appendix Fig. C.4). We therefore subsampled the GPS data by these 
behavior-specific time thresholds, leaving 33,176 GPS locations (state 1 
= 9111; state 2 = 13,485; state 3 = 10,580). 

The univariate habitat selection ratios suggested that eagles used 
habitats non-randomly in all three behavioral states (p < 0.001) with 
respect to distance from forest edge, terrain slope, and terrain rugged
ness, but not with respect to distance to ridgeline or to aspect (Appendix 
Table C.3). Some of these patterns of selection were constant across all 
three states, others were not. 

In all three behavioral states, selection was positive for areas <25 m 
from the nearest forest edge (state 1 wi = 2.9, state 2 wi = 2.9, state 3 wi 
= 2.2) and negative for open areas >75 m from the nearest forest edge 
(state 1 wi = 0.1–0.4, state 2 wi = 0.1–0.4, state 3 wi = 0.2–0.5; Ap
pendix Fig. C.5a). Selection was always positive (wi > 1) for land with 
steeper slopes (>15◦), and land with gentler slopes (<10◦) was always 
either underused or used in proportion to its availability (Appendix 
Fig. C.5b). Likewise, eagles selected for more rugged terrain during all 
three behavioral states (Appendix Fig. C.6b). 

Differences in selection among states were detected relative to dis
tance from forest edge and terrain slope. Selection was negative for areas 
over forest and far (> 75 m) from the forest edge during state 1 (wi =
0.5–0.9) and state 2 (wi = 0.4–0.8), but eagles generally used those areas 
proportional to their availability (wi ≈ 1) during state 3 (Appendix 
Fig. C.5a). Finally, selection for areas with steeper slopes (>15◦) was 
stronger for state 3 (wi = 1.6–2.4), and during state 3 eagles showed a 
slightly stronger avoidance of flatter (0–5◦) terrain (Appendix Fig. C.5b). 

3.3. Predicting where different behaviors occur 

The habitat selection ratio analyses identified distance to forest edge, 
slope, and terrain ruggedness for inclusion in the multivariate predictive 
models. Ruggedness and slope were correlated (Pearson's r = 0.91), thus 
we excluded ruggedness from the final model because selection was 
slightly weaker for this parameter. The models showed that habitat se
lection during state 1 and state 2 was very similar, with eagles avoiding 
open areas (> 75 m from the nearest forest) regardless of topography 
and positively selecting for areas over the forest with very steep terrain 
(> 20◦; Fig. 2a and Fig. 2b). Therefore, although the univariate selection 
ratios suggested negative selection for areas over forest and far from the 
forest edge during states 1 and 2, the multivariate ratio indicates that the 
eagles selected positively for these areas if they occurred on steep slopes. 
During state 3 the eagles positively selected for areas further from the 
forest edges, especially areas over forests with a topographic slope > 5◦

(Fig. 2c). 
The models showed that habitats that were utilized proportionally 

less than their availability (SV < 1) made up 60–64 % of the available 
land area, with 20–28 % of GPS fixes for the associated behavior in these 
areas. By contrast, 6–9 % of GPS fixes for each behavior occurred in 
areas assigned SVs > 4, yet these habitats covered 1–2 % of the available 
land area (Appendix Table D.1). 

3.4. Cross-validation of behavior-specific spatial models 

LOOCV indicated good predictive performance of the behavioral 
models (regression: b0 = − 0.018–0.000, b1 = 0.971–1.110, R2 =

0.929–0.975; rank correlation: rs = 0.943–1.000, p = 0.003–0.017; 
Fig. 3; Appendix Figs. D.1, D.2, and D.3). However, model performance 
varied among regions (Table 1, Appendix D). The state 1 model per
formed well in the East, Highlands, and Northeast (R2 > 0.8; rs > 0.8), 

J.M. Pay et al.                                                                                                                                                                                                                                   



Biological Conservation 274 (2022) 109743

5

but had only moderate predictive ability in the Midlands, Northwest, 
and South (R2 = 0.4–0.8). Furthermore, the state 1 model only per
formed well according to all measures of model performance for >50 % 
of individual cross validation runs for the East region. The state 2 model 
performed well in the Northeast, East, South, and Highlands (R2 > 0.9; 

rs > 0.8), but poorly in the Midlands and Northwest (R2 = 0.3–0.4). The 
state 3 model had high predictive ability across all regions (R2 > 0.9; rs 
> 0.9). 

4. Discussion 

This study shows how behavior-specific habitat selection analyses 
can provide insight into how species use resources for different behav
iors. Our approach provides a template for spatially explicit predictions 
of where different behaviors are likely to occur, as well as for assessment 
of the predictive capacity of spatial models. Using these methods, we 
provide the first quantitative assessment of behavior-specific habitat-use 
by the wedge-tailed eagle anywhere in its range. These findings have 
important implications for our understanding of the ecology of the 
Tasmanian wedge-tailed eagle and for the management of this endan
gered population in the face of increasing land use changes. 

4.1. Identifying behavioral states 

We were able to characterize three statistically defined behavioral 
states in the Tasmanian wedge-tailed eagle GPS-tracking data. Care 
should be taken to not over-interpret the biological meaning of the 
behavioral states identified (Patterson et al., 2009), as an animal may 
have multiple underlying motivations for a single statistically charac
terized behavioral state. Likewise, the temporal resolution of GPS fixes 
may mean that an individual can exhibit several different behaviors 
within each interval. We therefore interpret the three behavioral states 
based on the descriptive statistics of each state and our understanding of 
the ecology of the species. 

State 1 likely consisted of perching or roosting behavior, as step 
lengths were approximately within the locational measurement error of 
the GPS units, indicating that the birds were predominantly stationary 
or moving only a few meters at a time (e.g., walking, not flying). This 
interpretation is substantiated by post hoc analysis showing that state 1 
occurred at low altitudes (x = 20.6 ± 5.3 m; ±SD; flight altitude 
calculated as in Poessel et al., 2018b) and that this state was more 
common at the beginning and end of the day, when birds are likely to be 
at roost sites. As well as resting, state 1 also likely comprises behaviors 
such as prey handling and foraging, as wedge-tailed eagles commonly 
hunt from perch vantage points (Olsen, 2005). Both states 2 and 3 
involved transitory movements around the natal territory and behaviors 
such as soaring and hunting from the wing. We interpret state 2 as short, 
low flights that are likely to involve flapping-gliding behaviors, since 
they were shorter in duration and occurred at much lower altitudes (x =

22.8 ± 5.9 m; Sapir et al., 2011; Sur et al., 2021). State 3, which was 
characterized by high flight altitudes (x = 63.5 ± 23.6 m) and longer 
step lengths, is indicative of longer flights involving soaring behavior. 
The circadian patterns in State 3 are also consistent with this interpre
tation, as state 3 was most common in the middle of the day when the 
thermal updrafts used by soaring birds are strongest (Poessel et al., 
2018a). 

4.2. Associating behavioral states with habitats 

Young eagles showed strong selection for forest edges when perching 
and performing short flights. This is probably due both to the high 
habitat suitability for foraging in these ecotones and to the safety pro
vided by forests for these inexperienced fliers. Forest edges are primary 
foraging habitats for many predatory species, including other Aquila 
spp. (Balbontín, 2005), as they provide expansive views, access to 
spatially open habitats conducive to hunting, and often have higher 
densities of prey species. Likewise, the cover provided to young eagles 
by these habitats likely provides some protection from predators 
including other eagles and humans. 

We observed strong positive selection for steeper slopes by eagles 
performing long flights, a pattern consistent with data from congeners 

Fig. 2. Bivariate habitat selection surfaces for young Tasmanian wedge-tailed 
eagles according to the slope of the terrain and the distance to nearest forest 
edge (negative forest edge values are inside the forest; positive values are 
outside the forest). Each surface summarizes habitat selection during a specific 
behavioral state: (a) state 1: perching, (b) state 2: short flights and (c) state 3: 
long flights. The color scale specifies the selection values (SVs) for the corre
sponding combinations of habitat types. Selection values <1 indicate habitats 
used proportionally less than their availability in the landscape. 
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and other soaring species (Katzner et al., 2012; Poessel et al., 2018a; 
Tikkanen et al., 2018). Steeper topography and more variable terrain 
facilitate orographic updrafts, which can be exploited during flight for 
the vertical air movements they provide (Duerr et al., 2012; Fielding 
et al., 2019; Newton, 2008). As such, our findings of a stronger selection 
for steep slopes during long flights suggest that orographic winds are 
important to this behavior. 

The consistency of our results with the general understanding of the 
species' natural history indicates our results are robust to the limitations 
of the habitat selection ratio method we used. Selection ratios require 
that GPS locations are separated by sufficient time to be considered 
independent, as otherwise an individual will be selecting from a pool of 
habitats smaller than the defined available area. Therefore, employing a 
method to sub-sample the locations to ensure spatial independence, such 
as the behavior-specific variograms we use, is important to addressing 
this constraint. Furthermore, considering available habitat at the home 
range level assumes that an animal can move throughout their home 
range between observations. This makes the approach we used well 
suited to animals that can move across their home range within a short 
time period, but less appropriate for transitory animals (e.g., dispersing 
or nomadic individuals) or animals with very large home ranges. 

4.3. Cross-validation of behavior-specific spatial models 

The validation of maps produced by habitat-use models is often 
neglected, despite the widespread application of such maps for conser
vation management (Johnson et al., 2006). Furthermore, few studies 
assess regional differences in performance of habitat-use models, with 
predictions typically generalized across an entire study area. For soaring 
birds, this runs contrary to recent evidence that movement behavior is 
regionally variable (Duerr et al., 2019; Sur et al., 2020). Our study builds 
on those findings, as our behavior-specific habitat-use models varied in 
predictive performance with behavior and across regions. The model for 
perching (state 1) performed least well, with only moderate cross- 
validated performance in most regions of Tasmania. Although the ea
gles generally selected steep areas at the forest edge for perching, 
paddock trees are also important perching habitats for the species. These 
isolated trees are not detected effectively in our landcover dataset, 
which may explain the limited ability of the model to accurately predict 
perching areas. The models using distance to forest edge and topo
graphic slope predicted the location of flying behaviors with more ac
curacy, and these variables were effectively characterized by our 
landcover and topographic input data. The long flight (state 3) model 
had high predictive accuracy across all regions, whereas the short flight 
(state 2) model performed well except in the Northwest and Midlands. In 
these flatter landscapes the eagles selected more strongly for forest edges 
(Appendix E), suggesting models localized to these regions would more 
effectively predict where short flights occur. Together, these patterns 
thus emphasize the importance of cross validation for validation of 
spatially explicit habitat selection models. 

4.4. Conservation applications 

Our behavior-specific habitat selection analyses provide valuable 
new insights to guide the conservation management of the Tasmanian 
wedge-tailed eagle. The young birds we considered avoided large open 
areas, suggesting that forest managers may improve the habitat quality 
for this life stage by retaining and restoring patches of standing forest in 
areas that have been harvested or cleared (Lindenmayer et al., 2012). 
Similarly, the habitat selection models for flying behaviors can be used 
to guide efforts to reduce risks from sources of human-caused mortality. 
Short flights occurred at low altitudes that overlap the heights of power 
line poles in the state (12–50 m; TasNetworks pers. comm.). Our pre
dictive mapping of state 2 behaviors can therefore guide prioritization of 
high-risk areas for mitigation and positioning of future infrastructure. 
For example, flight diverters on power lines (Bernardino et al., 2018) 

Fig. 3. Expected vs. observed regressions assessing performance of the models 
for each behavioral state: (a) state 1: perching, (b) state 2: short flights and (c) 
state 3: long flights. The observed proportion is the proportion of GPS fixes in 
six SV bins for each of 22 leave-one-out cross-validated (LOOCV) runs. The 
expected proportion is the proportion of cross-validated GPS fixes that were 
expected to fall within each SV bin based on the model prediction. The aver
aged performance of each bin is plotted, with the vertical error bars designating 
the observed proportion 95 % CI and the horizontal lines the 95 % CI of the 
expected proportion. The fitted regression of the LOOCV performance of each 
bin is shown as the solid dark line, with the shaded gray area denoting the 95 % 
CI. A model 100 % accurate in predicting habitat use would have a regression 
line with a small CI that sat along the dashed line. 
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closer than 75 m from forest might be relatively more useful than on 
power lines farther from forests. Additionally, long flights occurred at 
higher altitudes that may be associated with higher risk of wind turbine 
collision (rotor swept areas of turbines in Tasmania range 30–170 m 
above ground; Cattle Hill Wind Farm, 2021; Hydro-Electric Corporation, 
2019). With Tasmania's landscape being increasingly exploited for wind 
energy projects, the state 3 model may prove a useful first step in esti
mating risk to birds. 

There are important provisos to the application of our behavior 
specific habitat selection models as conservation management tools. 
First, the models are specific to the habitats used by wedge-tailed eagles 
during the post-fledging dependence period. Thus, the predictions from 
these models are specific to eagles during this life-stage and localized to 
areas that support a breeding territory. The models could most effec
tively be used in conjunction with state-wide estimations of nesting 
habitat suitability (Koch et al., 2013) or known nest sites (DPIPWE, 
2016). Second, predictive ability of these models is likely limited in 
regions with lower cross-validated performance or with an absence of 
eagle tracking data (e.g., regions of expansive buttongrass, Gymno
schoenus sphaerocephalus, moorlands characteristic of west and south
west Tasmania; DPIPWE, 2013). 

4.5. Conclusion 

Habitat selection models only rarely account for behavior. Our study 
provides a framework for spatially explicit and behavior-specific habitat 
selection analyses that can be applied to other species of conservation 
concern. We used a methodological approach based on selection ratios 
to explore how different resources are used for different behaviors and to 
predict where these behaviors are likely to occur across the landscape. 
Further, our inclusion of leave-one-out cross-validation allowed the 
predictive ability of models to be broken down at different scales of 
inference. This ensures that only high-performing models are passed on 
to conservation managers. In the case of the Tasmanian wedge-tailed 
eagle, this framework has provided important insights into behavior- 
specific habitat associations that have direct conservation relevance. 
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Table 1 
Regional summaries of the leave-one-out cross-validated (LOOCV) performance for spatial models predicting where young Tasmanian wedge-tailed eagles exhibit each 
of three behavioral states (state 1: perching; state 2: short flights; state 3: long flights). The mean expected vs. observed regression R2 values, the mean Spearman's rank 
correlation rs, and the percentage of individual cross validation runs that predicted well according to all measures of model performance are presented.  

Region State 1 model State 2 model State 3 model 

R2 rs % R2 rs % R2 rs %           

East 0.966 0.971 100 0.932 0.886 50 0.972 0.935 100 
Highlands 0.964 0.886 50 0.9 0.857 50 0.989 0.914 50 
Midlands 0.427 0.803 0 0.343 0.634 0 0.931 0.913 100 
Northeast 0.864 0.857 50 0.902 0.996 75 0.962 0.968 100 
Northwest 0.517 0.871 33 0.378 0.899 33 0.943 0.952 100 
South 0.796 0.927 25 0.846 0.907 75 0.907 0.9 75           

All animals 0.929 0.943 36.4 0.975 1 54.5 0.948 0.943 86.4  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2022.109743. 
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